Using Self-Organizing Maps to Visualize, Filter and Cluster Multidimensional Bio-Omics Data
نویسندگان
چکیده
In the face of ever-growing of biological data at the genome scale (denoted as omics data) [1,2], investigators of virtually every aspect of biological research are shifting their attention to massive information extracted from omics data. The ‘omics’ refers to a complete set of bi‐ omolecules, such as DNAs, RNAs, proteins and other molecular entities. Omics data are produced by high-throughput technologies. At first, these technologies were known as cDNA microarray [3] and oligonucleotide chips [4]. Then, they were diversely evolved into ChIP-on-Chip [5] and ChIP-Sequencing [6,7], two-dimensional gel electrophoresis and mass spectrometry [8] and high-throughput two-hybrid screening [9]. Recently, they are high‐ lighted by next-generation sequencing technologies such as DNA-seq [10] and RNA-seq [11]. Because of these technological advances, biological information can be quantified in parallel and on a genome scale, but at a much-reduced cost. Nearly, omics data cover every aspect of biological information and thus secure the studies being carried out from a ge‐ nome-wise perspective. To name but a few examples, they can be used (i) to catalog the whole genome within a living organism (genomics), (ii) to monitor the gene expression at RNA level (transcriptomics) or at protein level (proteomics), (iii) to study the protein-pro‐ tein interactions (interactomics) and transcription factor-DNA binding patterns (regularo‐ mics), and (iv) to characterize DNA or histone modifications exerting on the chromosomes (epigenomics). These multi-layer omics data not just constitute a global overview of molecu‐ lar constituents, but also provide an opportunity for studying biological mechanisms. In contrast to conventional reductionism focusing on individual biomolecules, omics ap‐ proaches allow the study of emergent behaviors of biological systems. This conceptual ad‐ vance has led to the advent of systems biology [12], an interdisciplinary research field with the ultimate goal of in silico modeling of biological systems.
منابع مشابه
Growing Self-Organizing Maps for Data Analysis
Currently, there exist many research areas that produce large multivariable datasets that are difficult to visualize in order to extract useful information. Kohonen selforganizing maps have been used successfully in the visualization and analysis of multidimensional data. In this work, a projection technique that compresses multidimensional datasets into two dimensional space using growing self...
متن کاملESOM-Maps: tools for clustering, visualization, and classification with Emergent SOM
An overview on the usage of emergent self organizing maps is given. U-Maps visualize the distance structures of high dimensional data sets. P-Maps show their density structures and U*-Maps combine the advantages of the mentioned maps to a visualization suitable to detect nontrivial cluster structures. A concise summary on the usage of Emergent Self-organizing Maps (ESOM) for data mining is give...
متن کاملUsing Andrews Curves for Clustering and Sub-clustering Self-Organizing Maps
The use of self-organizing maps to analyze data often depends on finding effective methods to visualize the SOM’s structure. In this paper we propose a new way to perform that visualization using a variant of Andrews’ Curves. Also we show that the interaction between these two methods allows us to find sub-clusters within identified clusters.
متن کاملVisual Hierarchical Dimension Reduction
Traditional visualization techniques for multidimensional data sets, such as parallel coordinates, star glyphs, and scatterplot matrices, do not scale well to high dimensional data sets. A common approach to solve this problem is dimensionality reduction. Existing dimensionality reduction techniques, such as Principal Component Analysis, Multidimensional Scaling, and Self Organizing Maps, have ...
متن کاملLimitations of self - organizing maps
The limitations of using self-organizing maps (SOM) for either clustering/vector quantization (VQ) or multidimensional scaling (MDS) are being discussed by reviewing recent empirical ndings and the relevant theory. SOM's remaining ability of doing both VQ and MDS at the same time is challenged by a new combined technique of online K-means clustering plus Sammon mapping of the cluster centroids....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012